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Abstract

Weed density and composition are not uniform throughout the field, nevertheless, the
conventional approach is to carry out a uniform application. Object Detection Networks
have already arrived in agricultural applications that can be used for weed management.
The current study developed a detection and classification weeds system in a one-step
procedure using RetinaNet Object Detection Network. The procedure was based on
identifying Solanum nigrum L., Cyperus rotundus L. and Echinochloa crus-galli L. and
two growth stages both for a broadleaf species (Solanum nigrum L.) as well as
narrow-leaved species (Cyperus rotundus L.) in the maize field. The predictions were
evaluated by mAP metric. The result obtained was 0,88 with values between 0,98 and
0,75 depending on the class.
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Introduction

Weed management plays one of the most important roles in agriculture. The weed
density and composition are, in practice, not uniform throughout the field, with spatial
and temporal variation (Fernández-Quintanilla et al 2018). Until recently the
conventional approach was to create a uniform application (Pérez-Ortiz et al., 2016).
With Site-Specific Weed Management (SSWM), a more precise weed treatment can be
achieved with both economic, environmental and food quality benefits (Tang, et al.
2017). SSWM is achieved by applying a treatment only on the weed patches (eg.
nozzles on/off), potentially complemented with selective application. An application
system consists of a weed mapping component that determines the presence or absence
of weeds/crop in the different locations of the field. Based on that information, the
implement should adjust its treatment accordingly. Integrating a multi-class weed
detection system has the potential of further benefits, with reduced herbicide usage,
safer agricultural products for the consumer and the environment, and a more
sustainable agriculture. The main expected outcome and impact of this activity is to
reduce the herbicide input, herbicide residues in the food chain and costs of weed
control.
The use of deep learning has swiftly emerged as a promising method in weed and plant
classification and detection, with promising potential for multi-class weed detection
problems. Dyrmann et al. (2016) recompiled six datasets from different research works
and trained a Convolutional Neural Network (CNN) to classify between twenty two
weed species. In this work, a classification accuracy of between 82.4% and 88.2% was



achieved showing potential for CNN weed classification leaving aside the problem of
the weed detection. Then, Dyrmann et al. (2017) worked on the detection and
classification of seventeen weed species in the maize field. Segmentation techniques
were used for detección the species plants with the intersection-over-union values of
between 0.69 and 0.93 for weeds and maize plants. Following the detection of the
weeds, a convolutional neural network was used, which classifies the weeds with an
overall accuracy of 87%. However two different processes were needed to identify the
weed species with classification accuracy similar to those reported in this paper for
detection and classification in one-step.
Lin et al. (2017) developed a new Object detection Network called RetinaNet. This
network is a one-stage object detector that can handle object location and classification
at once, reducing the prediction time and increasing the detection accuracy.
Agricultural applications of object detection are becoming more common. A real time
vegetable detection system was developed using deep learning networks (Zheng et al.,
2018). Multiple object detectors were selected in order to recognize tomato and
cucumber at different stages. Among all advanced detectors selected, YOLOv2
(Redmon & Farhadi, 2017) had the highest performance to find all relevant objects. By
optimizing YOLOv2, Koirala et al. (2019) developed a new algorithm which exhibited
improved detection performance to detect mangos in images. Quan et al., (2019) trained
a faster R-CNN network to detect maize seedling under different growth stages and
complex field environments. Nevertheless, these methods have not been extensively
tested in weed detection. With regards to RetinaNet there are only a few studies. Rançon
et al., (2019) tested it in vineyards to detect Esca disease (Phaeoacremonium
aleophilum) and obtained AP of 0,7. Wei et al., (2020) created a robot “ROS-Based
Rapid Identification Robot” to detect weeds in the maize crop with 0,94 AP in weeds
and 0,93 maize class. In all cases, the authors have demonstrated the potential use of
object detection architectures in the agricultural discipline. Nevertheless, they could not
detect and discriminate between several weed species in one-step, like as RetinaNet
does. The use of these neural networks algorithms is very useful in today's agricultural
conditions. The Object Detection Networks can be useful through apps for decision
making. On the other hand, these networks can be integrated into real-time treatment
systems capable of reducing the aggressiveness of treatments. Some commercial
prototypes, such as the Blueriver case, combine real-time sensing systems with a
commercial plant-by-plant applicator. All these systems are evolving rapidly and can be
a response to the demand for reduced pesticide use and increased yields. The current
study proposes a detection system of the weed species Cyperus rotundus L.,
Echinochloa crus-galli L., Solanum nigrum L. and two growth stages both for a
broadleaf species (Solanum nigrum L.) as well as narrow-leaved species (Cyperus
rotundus L.); combined with crop plants (Zea Mays L.) under real and commercial
production fields. The detection and classification of weed species and growth stages
were done through a one-step procedure using RetinaNet Object Detection Network.

Materials and methods

Image acquisition
The selected fields for the experiments were located in the province of Badajoz, Spain
(39° 1' 14,42", -6° 3' 40,69"). All the images were collected on commercial fields under
real uncontrolled illumination conditions. The images were captured in April of 2020 in
maize crops (Zea mays L.). Two series with different sowing dates were selected such
that the crops corresponded with V1 and V3 growth stages (Ritchie et al., 1993). No



weed treatment was carried out during the acquisition phase or 10 days before. Each lot
was processed following an “M” trajectory, and every 2 m a zenithally image was taken
from a height of 1.3 m. Three weed species (Cyperus rotundus L., Echinochloa
crus-galli L., and Solanum nigrum L.) were found in low growth stages (Vc and or
greater or equal to V1), combined with crop plants (Zea Mays L.). The images were
captured using a Canon PowerShot SX540 HS camera using a resolution of 5184 px X
3886 px. A shutter speed of 1/1000 was used, while the ISO calibrated automatically to
achieve a good image quality under the changing lighting conditions during the
measurements. Crop and weed plants were in the scene of the image, as well also weeds
were in the line and interline crops. Large proportion of weeds in the crop line
overlapped with maize plants, especially maize plants in V3 growth stages. Some
examples of the dataset are shown in Figure 1.

Figure 1:  Part of a training image showing the plants classes throughout the bounding
boxes and EPPO code.

Image pre-processing
A total of 312 images were taken, in which the present plant species were identified and
manually labelled. Besides the previously defined classes, an extra “Ve” class was
introduced, containing all emerging plants that could not be identified due to their small
size. Labeling the images was done using dedicated software called LabelImg (Tzutalin,
2015), which saves the labels using the PascalVOC format (Everingham et al., 2010).
This format saves the co-ordinates of a bounding box surrounding the object that it
represents. All bounding boxes defined for one image were saved in a single XML file,
and for each object saved the co-ordinates of the upper-left and lower-right corner
(xmin, ymin, xmax, ymax), as well as the class name of the labelled object. Four plant
species were categorized with the help of experts and labelled using the EPPO code
(EPPO code system,), extended using a suffix representing either the growth stage or
another identifier as explained below: SOLNI_Vc for plants identified as the species
Solanum nigrum L, where suffix “Vc'' stands for the embryonic growth stage
(cotyledon); SOLNI for plants identified as the species Solanum nigrum L. showing
more leaves than only the embryonic ones; CYPRO_min for plants identified as the



species Cyperus rotundus L. showing more than one leaf, where suffix “min” means that
for this class the bounding boxes were drawn encompassing only of the centre of the
plant (see Figure 1); CYPRO for plants identified as the species Cyperus rotundus L.
showing only one leaf (>V1); ECHCG for plants identified as the species Echinochloa
crus galli L; and ZEAMX for plants identified as the species Zea mays L.
In order to evaluate the predictive potential of a model, it is necessary to perform these
evaluations with data that have not been used for training, i.e., 'new data for the model'.
The dataset was divided as follows: 70% of the images were randomly taken to form the
Training Set, with the remaining 30% being the Validation Set. In addition, a random
sample of 30% of the images was taken from the training set, conforming the Test Set.
The last set was taken to evaluate the training progress. Both training and validation
(including testing) was conducted using a GeForce GTX 1080 GPU. Captured image
sizes could not be processed with the processing power of the GPU, requiring a
reduction of their size. For that, a scan of the images was performed generating 74
smaller sub-images for each full-image. Three parameters had to be selected: image
height, image width and overlap between one sub-mage and the next; choosing 3886 px
for the width, 1926 px for the height, and an overlap of 1900 px. Each XML that
defined the plant labels in the original images were corrected accordingly, resulting in a
new XML file for each sub image. As a result of the scanning process, some bounding
boxes that are in contact with edges of the sub-image might be cut, resulting in
incomplete data. To avoid the use of this data for training, those boxes were eliminated.
The large overlap chosen for scanning allows that if a plant is removed because it
touches the edge it will appear in the next sub-image, thereby ensuring that all the plants
in the original images have a label on the training set. After the processing of scanning
each of the three image groups (training set, test set and validation set), 4368 training
sub-images, 2181 validation sub-images and 1310 test sub-images were obtained. From
these, any sub-images without bounding boxes were deleted. The labels were visually
examined by experts who corrected labelling errors. The final data set consists of 7859
sub-images with 60436 bounding boxes.

Table 1: Identified weed species in the study labelled with the EPPO code.  Number of
labels boxes in total for the Training set, Test set and Validation set.

Species Label Training set Test set Validation set
t

Solanum nigrum Vc SOLNI_Vc 6836 2025 3469

Solanum nigrum >Vc SOLNI 2714 907 1275

Echinochloa crus galli ECHCG 2463 851 1187

Cyperus rotundus CYPRO 6292 1942 3304

Cyperus rotundus >V1 CYPRO_min 5000 1445 2501

Zea mays ZEAMX 10193 3004 5028

RetinaNet object detection
Object detection is a powerful technique that can achieve successful plant and weed
identification. RetinaNet is a single, unified network composed of a backbone network
and two task-specific subnetworks. The backbone is responsible for computing a



convolutional feature map over an entire input image and is an off-the-self
convolutional network. The first subnet performs convolutional object classification on
the backbone’s output; the second subnet performs convolutional bounding box
regression (Lin et al., 2017). The two subnetworks feature a simple design for
one-stage, dense detection. RetinaNet was selected among the object detection networks
available in the literature as it has shown a good performance achieving accuracy
similar to two-step networks but with the speed of single-step networks.

Training
Wee and crop plants were classified in 6 different classes ( SOLNI_Vc, SOLNI,
CYPRO, CYPRO_min, ECHCG, ZEAMX). Training was made using the
implementation proposed by Gaiser et. al., (2019). The deep learning model used in this
study is implemented using Keras 2.4.3 in python 3.6.8 with the TensorFlow (2.3.0)
backend.
In most deep learning applications, it is common to utilize a pre-developed computer
vision model trained on a relevant dataset (so-called transfer learning). Collecting a
large enough dataset for developing a custom deep learning method would be difficult,
time-consuming, and nearly impossible for most users focused on application. Using
transfer learning (Pan & Yang., 2010), existing feature extraction methods, such as
those mentioned previously, can be leveraged from models trained on standard datasets
and object detection is fine-tuned to the desired target (Kamilaris & Prenafeta-Boldú,
2018). The Resnet50 (He et al., 2016) model was used as the back-bone network,
pre-trained using the COCO dataset (Lin et al., 2014), and an initial learning rate of
1e-5 was used in training. For the training and validation subsets, data augmentation
(Shorten et al., 2019) was also undertaken to avoid overfitting and overcome the highly
variable nature of the target classification. The Keras library (Keras, 2015) was used to
perfom the data augmentation parameter like rotation, scale, illumination, perspective
and colour. Specifically, rotation of up to 10º, a brightness shift of ±20 %, a channel
shift of ±30 %, a zoom of ±20 % were randomly undertaken, along with possible
horizontal and vertical flips. RetinaNet was trained until the mAP of the training set of
every class did not improve for 16 consecutive epochs. The parameters used for the
implementation of RetinaNet (Gaiser et al., 2019) were the following: 1e-5 for the
learning rate; the COCO dataset as pre-trained model, the backbone model used was
ResNet-50 (He et al., 2016)), the number of epochs to train was 100 and the number of
steps per epoch was 600, the backbone layers were frozen during training, the images
were not resized, option image augmentation carried out as stated above, and the batch
size  was 8. The rest of parameters available in the implementation were left by default.

Fitness Evaluation
A trained model was saved at the end of each epoch. The number of generated models is
therefore equal to the number of epochs during the training process in which each
trained model may produce a different degree of detection accuracy. In this study, 100
models were generated after the training. Each model was analysed to determine which
provides the best result. A validation set with a total of 2181 sub-images with 16764
labelled plants (see Table 1) not used in training were used in validation to select the
best performing network model developed in this study.

Results
This study considered five different classes to identify: 3 weed species (Cyperus
rotundus L., Echinochloa crus-galli L., Solanum nigrum L.,) with two classes for two



growth stages of the species Solanum Nigrum L., plus one crop class (Zea Mays L.) .
The performance of the RetinaNet modeSl was evaluated with the mean average
precision (mAP), computed as the average precision (AP) over each class (Padilla et al.,
2020).
The curves learning rates, and the mAP values for each epoch are shown in Figure 1 for
the test set (sign squares) and validation set (sign rhombuses). In epoch 84, the trained
model converges and obtains its maximum prediction value (maP: 0,8768) over the
validation set, see Figure 2. The AP values per class are shown in Table 2, where the
lowest value AP occurs for the CYPRO_min class (AP: 0,7492) and the highest for the
ZEAMX class (AP: 0,9744). In addition, the prediction time of the 2181 validation
images (3886 px width and 1926 height) was 0,2354 second per image.

Figure 2: Testing and validation values mAP per epoch and the maximum prediction
value for the validation set is shown by the grey line in the 84 epoch.

Table 2: AP per class values and mAP values to validation images with model obtained
in 84 epoch.

Class Label AP

Solanum nigrum L. Vc SOLNI_Vc 0,8161

Solanum nigrum L. >Vc SOLNI 0,9112
Echinochloa crus galli L. ECHCG 0,9254

Cyperus rotundus L. > 1 leaf CYPRO 0,8844

Cyperus rotundus L. = 1 leaf CYPRO_min 0,7492

Zea mays ZEAMX 0,9744

mAP 0,8764

Discussion



The number of species and growth stages of the weeds are low. However the two
important groups of weeds were represented, the broadleaf weeds by Solanum nigrum
L. and narrow-leaved weeds by Cyperus rotundus L. and Echinochloa crus-galli L.
Classification between these groups is important to select the herbicide type because
many of these are formulated to control the group of broadleaf weeds, “broadleaf weeds
herbicides”, and others to control the narrow-leaved weeds “graminicide herbicides”.
In addition, the dataset contains an example species for each group (Solanum nigrum L.
and Cyperus rotundus L.) with different growth states. Being able to detect small weeds
and low stages of development such as CYPRO_V1 and SOLINI_Vc classes allows
early weed control. Therefore, lower dose of herbicide in chemical control or less soil
removal in mechanical control. Also, two species (Echinochloa crus-galli L. Cyperus
rotundus L) of the same botanical family (Poaceae) represent morphological similarities
for the classification algorithms. Discriminating between these two species is relevant
since genetic resistance cases of the chemical family’s herbicides have been reported for
biotypes of Echinochloa crus-galli L. (Gavilan A., 2011). On the other hand, the new
self-labeling algorithms are being developed for the research team to increase the
number of images. This work includes more weed species and growth stages as well as
increasing the amount of data per class. Also, this data repository is being prepared
with labeled image and python scripts to leave as open source in the GitHub website.
Regarding network configuration, analysis of both performance and inference rate of
other Object Detection networks is also planned. Furthermore, cross validation is
needed on the parameters of the RetinaNet implementation used to find the best
combination.

Conclusions

The current paper demonstrates detecting and classifying in one-step two important
groups of weeds, such as broadleaf weeds (Solanum nigrum L.) and narrow-leaved
weeds (Cyperus rotundus L., Echinochloa crus-galli L.) in the maize (Zea mays L.)
field. In addition, these last two species of the same botanical family (Poaceae) were
well classified. Besides that, The RetinaNet archives discriminate between two growth
stages both for a broadleaf species (Solanum nigrum L.) as well as narrow-leaved
species (Cyperus rotundus L.). This Object Detection method demonstrates promising
results for porting this knowledge to SSWM not only at the level of weed species but
also at their growth state.
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