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2 Dept. Sistemas de Informaión, FRM, UTN, Mendoza, Argentinafbromberg@frm.utn.edu.arAbstrat. Supervised learning lassi�ers have proved to be a viable so-lution in the network intrusion detetion �eld. In pratie, however, itis di�ult to obtain the required labeled data for implementing theseapproahes. An alternative approah that avoids the need of labeleddatasets onsists of using lassi�ers following a semi-supervised strategy.These lassi�ers use in their learning proess information from labeledand unlabeled datapoints. One of these semi-supervised approahes, orig-inally applied to text lassi�ation, ombines a naïve Bayes (NB) las-si�er with the expetation maximization (EM) algorithm. Despite somedi�erenes, network intrusion detetion shares many of the harateris-tis of the doument lassi�ation problem. It is extremely hard to obtainlabeled data whereas there are plenty of unlabeled data easily aessible.This work aims to determinate the viability of applying semi-supervisedtehniques to network intrusion detetion, with speial fous on the om-bination of NB lassi�er and EM. A set of experiments onduted on the1998 DARPA dataset show using EM with unlabeled data an providesigni�ant bene�ts in lassi�ation performane, reduing the size of re-quired labeled data by 90%.Keywords: Intrusion Detetion Systems - Semi-supervised Learning -Expetation Maximization.1 IntrodutionThe use of supervised learning lassi�ers for network intrusion detetion hasbeen applied suessfully in previous works [1,2,3℄. As it is known, supervisedlassi�ers require a dataset ontaining labeled tra� instanes for the learningproess. Unfortunately, in the ase of network intrusion detetion, obtaining suhlabeled datasets requires onsiderable human e�ort.One possible solution is the use of lassi�ers whih follows a semi-supervisedlearning strategy [4℄. Algorithms following this strategy are able to learn lassi-�ation models using information not only from labeled datasets but also fromunlabeled ones.A simple semi-supervised approah, usually applied to doument lassi�ationproblems [5℄, is introdued by Nigam et al. in [6℄. The proposed algorithm is



based on the ombination of EM [7℄ and a NB lassi�er. The algorithm �rsttrains a lassi�er using the available labeled douments, and probabilistiallylabels the remaining unlabeled douments. It then trains a new lassi�er usingthe labels for all the douments, and iterates to onvergene. In many doumentlassi�ation problems, only a redued set of labeled douments are aessiblewhereas a big number of unlabeled douments are available. This situation makesdoument lassi�ation problem suitable for using a semi-supervised approah.Despite some di�erenes, network intrusion detetion shares many of the har-ateristis of the doument lassi�ation problem. The available labeled datasetare limited, whereas there are plenty of unlabeled data easily aessible. There-fore, it seems a semi-supervised approah like the proposed in [6℄ ould providebene�ts to the network intrusion detetion problem.In this work, an study is arried out in order to determinate the viability ofapplying semi-supervised tehniques to network intrusion detetion with speialfous on the ombination of EM and a NB lassi�er. A set of experiments areonduted on the 1998 DARPA dataset [8℄, a widely used dataset for testingnetwork intrusion detetion approahes.The rest of this paper is organized as follows. Best known approahes for re-duing labeling e�orts are mentioned in setion 2. Setion 3 brie�y desribesthe elements involved and speial onsiderations required, when the proposedBayesian semi-supervised strategy is applied to intrusion detetion. The resultsof the evaluation of the proposed approah on the 1998 DARPA dataset are pre-sented in setion 4. Finally, in setion 5, onluding remarks and future worksare ommented.2 Bakground and Related worksA number of alternative approahes have been proposed in order to redue orsimply avoid the need of labeled datasets and the onsequent human e�ort re-quired.A �rst approah onsists of using unsupervised learning tehniques. One of themajor advantages of this approah is that it is suitable for handling unlabeledtraining data sets with not only normal tra� but also anomalies (i.e., attaks).Algorithms suh as Support Vetor Mahines (SVM) [9℄ and lustering [10℄ wereapplied to the network intrusion detetion �eld. Unfortunately, as was notied byEskin in [10℄, algorithms following the unsupervised strategies only works underthe assumption that the number of normal tra� instanes vastly outnumbersthe number of anomalies. An assumption whih not always holds.A seond approah uses semi-supervised learning tehniques. Following the promis-ing idea of learning from labeled and unlabeled tra� instanes, some authors[11,12,13℄ have fous their work on this learning alternative applied to networkintrusion detetion.Among the best known semi-supervised learning tehniques [4℄, the ombinationof NB and the EM provides a good trade o� between simpliity and performane.



Thus, it seems important to evaluate its performane on the network intrusiondetetion �eld.3 A Bayesian Semi-supervised Strategy for NetworkTra� Classi�ationNigan et al. [6℄ proposed a semi-supervised learning algorithm based on theombination of EM and a NB lassi�er. The following subsetions desribesmain harateristis of the NB and EM semi-supervised algorithm when appliedto the network tra� lassi�ation.3.1 Naïve BayesNetwork tra� lassi�ation implies assigning a tra� instane to one or moreprede�ned lasses C = {c1..., ck}. In the simplest ase only two lasses are on-sidered, attaks and normal tra�.Let L be a dataset ontaining labeled tra� instanes {li..., l|L|}, lassi�ationan be done by just estimating the probability of eah lass ck given li and a setof distribution parameters denoted φ. Then, lassi�ation is done aording tothe ck ∈ dom(C) with maximum probability.An estimation of the lass ck probability, P (ck|li; φ̂), an be obtained by meansof Bayes theorem, giving
P (ck|li; φ̂) =

P (ck|φ̂)P (li|ck; φ̂)

P (li|φ̂)
(1)Note that the numerator P (li|φ̂) is the same for all ck ∈ dom(C) and an beremoved from the equation. Whereas the lass ck Prior probability estimator

P (ck|φ̂) is de�ned as the ount of instanes li belonging to lass ck in the whole
L dataset. Equation (2) de�nes lass Prior for lass ck.

P (ck|φ̂) =

∑L

i=1
li ∈ ck

|L|
(2)Aording to naïve Bayes independene assumption, li attributes are mutuallyindependent given the lass, so that

P (li|ck; φ̂) =

N∏

j=1

P (lji |ck; φ̂) (3)Due to li tra� instanes ontain ontinuous attributes, a ommon approah isto assume that the distribution followed by attribute l
j
i given C is a Gaussian[14℄, that is P (li|ck; φ̂) = N(lji |µjk, σ

2

jk). Estimates for µik and σ2 are de�ned asfollows
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∑L

i=1
l
j
ik

|lik|
(4)

σ̂2

jk =

∑L

i=1
(ljik − µjk)

2

|lik|
(5)When NB is trained with an small set of labeled tra� instanes, lassi�ationwill su�er performane loss due to a high variane in parameter estimates φ.However, when this small set is ombined, by means of EM, with a large set ofunlabeled tra� instanes, it is possible to improve parameter estimates. Detailsof this proess are shown in the following setion.3.2 Expetation MaximizationEM is an iterative algorithm for maximum likelihood or maximum a posterioriestimation in problems with inomplete data [7℄. In this ase, unlabeled data areonsidered inomplete due to missing lass labels.The basi algorithm written in pseudo ode is shown in Figure 1. EM onsistsof two steps, an Expetation step or E-step plus a Maximization step or the M-step. The proess is initialized with the M-step, where NB lassi�er parameters

φ are estimated using only labeled tra� instanes from dataset L. Then, theyle begins with an E-step that uses reently learned NB lassi�er to proba-bilistially label the unlabeled tra� instanes in dataset U . Then, paremeters
φ are estimated one again in a new M-step but using the union of datasets Land U . Algorithm iterates until estimates of the parameters φ does not hange.1: Learn parameter estimates φ̂ for a NB lassi�er f using tra� instanesfrom the labeled set L2: repeat3: for eah tra� instane li in U do4: Using the urrent lassi�er f lassify eah li5: end for6: Learn φ for a new naive Bayes lassi�er f using the union of L and U7: until the parameter estimates φ onverge8: Return the lassi�er f from the last iterationFig. 1: naïve Bayes ombined with EM Algorithm4 ExperimentsThis setion aims to evaluate the performane of a simples NB lassi�er whenit is ombined with EM algorithm (denoted NBEM ). A set of experiments areonduted in order to evaluate the minimum amount of labeled tra� requiredby NBEM for ahieving aeptable performane.



4.1 Dataset desriptionThe experiments were onduted over �ve weeks of the 1998 DARPA data set, adataset widely used for intrusion detetion evaluation. DARPA dataset ontainsaround 1.5 millions tra� instanes with almost 50% of them labeled as attaks.Seleted attributes for desribing the input data onsist of a number of �eldsavailable from a network tra� instane, as well as other high level attributesobtained after some network paket preproessing.Table 1 shows a total of �fteen �elds related to a network tra� instane. At-tributes suh as protool, tp.srport, tp.dstport, ip.sr and ip.dst are easilyobtained from network onnetion. Remaining ones are higher level attributeswhih provide information related to onnetion time and data transferred.Table 1: Basi attributes of individual tra� onnetions.Feature Name Desription Quantityonnetion.time Time of the onnetion in hours,minutes and seonds 3protool Type of protool, e.g ssh,http,ftp 1tp.srport TCP soure port 1tp.dstport TCP destination port 1ip.sr IP soure address 4ip.dst IP destination address 4tp.len Number of bytes transfered 1num.pkts.sr.dst Number of pakets from sr IP to dstIP 1num.pkts.dst.sr Number of pakets from dst IP to srIP 1num.ak.sr.dst Number of paket with ACK �agative from sr to dst 1num.ak.dst.sr Number of paket with ACK �agative from sr to dst 1num.syn.sr.dst Number of paket with SYN �agative from sr to dst 1num.syn.dst.sr Number of paket with SYN �agative from dst to sr 1num.bytes.sr.dst Number of bytes from sr to dst 1num.bytes.dst.sr Number of bytes from dst to sr 1A seond set of attributes are shown in Table 2. These attributes provide infor-mation about the number of onnetions using a �ve-seond time windows aswell as information related to the last 100 onnetions.Many of these �elds have been used in previous works [15,16℄ and have provided agood trade o� between overall performane and the omputational e�ort neededfor training proess. Seleted �elds are represented aording to Quantity valueshown in tables, resulting a total of 32 attributes used for training proposedlassi�ers.



Table 2: Attributes involving many onnetionsFeature Name Desription QuantityInformation about onnetions in the last �ve seondsount.time.sr. Number of onnetions from the sameaddress as the urrent onnetionsoure address 1ount.time.dst Number of onnetions to the sameIP address as the urrent onnetiondestination IP address 1ount.time.srv.sr Number of onnetions from the sameservie as the urrent onnetion 1ount.time.srv.dst Number of onnetions to the sameservie as the urrent onnetion 1Information about the last 100 onnetionsount.sr Number of onnetions from the sameaddress as the urrent onnetionsoure address 1ount.dst Number of onnetions from to thesame address as the urrentonnetion destination address 1ount.srv.sr Number of onnetions from the sameservie as the urrent onnetion 1ount.srv.dst Number of onnetions to the sameservie as the urrent onnetion 14.2 Dataset samplingA randomly seleted 1% subset of the DARPA data is used for the trainingproess, whereas another 0.5% subset is used for testing purposes, followingstandard ratios used in lassi�ation problems.The number of tra� instanes ontaining attaks is extremely variable. There-fore, no assumption is made about attak lass distribution. Experiments areonduted against datasets ontaining attak distributions of 10%, 20%, 30%,50%, 60%, 70%, 80%, 90%. The 0.01 fration of the whole DARPA dataset (i.e.,1% of it) with proportion of attaks of p% is sampled from the whole datasetin two steps, one that samples attaks from the set of all attaks, and anotherfor sampling the normal data from the set of all normal tra� instanes. Tomaintain the p% ratio of attaks in the resulting 1% dataset, a fration p× 10−4of attaks are randomly and uniformly sampled from the set of all attaks. Sim-ilarly, a fration of (1− p)× 10−4 is randomly and uniformly sampled from theset of all normal tra� instanes.Let T be a randomly and uniformly seleted subset sampled for training asdesribed in previous paragraph, a perentage of T is onsidered as labeled (de-noted L) whereas the remaining instanes are onsidered as unlabeled (denoted
U).As usual, for the supervised strategy only, L is used for learning the naïve Bayeslassi�er. On the other hand, for the semi-supervised strategy, an union of Land U datasets is used in EM algorithm as shown in Figure 1. As in real lifesituation L is a dataset labeled by experts, random sample of L is fored tomaintain equally distributed lasses while U sample keeps proper dataset attak



distribution. The lassi�ation performane of both lassi�ers, NB on L andNBEM on L and U , are evaluated on a test dataset.For statistial signi�ane a total of 40 repetitions of the experiments are on-duted using di�erent randomly and uniformly seleted subsets for eah attakdistribution.4.3 Performane Metris for Network Intrusion EvaluationStandard performane metris for network intrusion evaluation are used for om-paring the di�erent approahes disussed. These metris orrespond to AttakDetetion rate (DR) and False Alarm rate (FA).DR is omputed as the ratio between the number of orretly deteted attaksand the total number of attaks. While FA rate is omputed as the ratio betweenthe number of normal onnetions that are inorretly lassi�ed as attaks andthe total number of normal onnetions.4.4 Evaluation of Naïve Bayes lassi�erBefore evaluating the NBEM approah it is important to evaluate performaneof a simple NB lassi�er.Figure 2 shows performane of a NB lassi�er trained with the whole samplelabeled dataset T .
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Behaviour presented by NB on DARPA 1998 dataset may be favored due to someunrealisti proedures observed during dataset generation. For a more detailedexplanation, the reader is referred to [17℄.4.5 Evaluation of Naïve Bayes with EMExperiments in this setion aim to evaluate the performane of the NB and EMombined approah.Figure 3 shows average DR and FA values for NB and NBEM along datasetswith di�erent attaks distributions, following training proesses as mentioned insubsetion 4.2.As an be observed major bene�ts provided by EM are observed when labeleddataset L takes values up to 10% of the training set T . Beyond this point,no signi�ant appreiable di�erenes between NB and NBEM are observed.Therefore, EM seems to be unneessary and ould be avoided.As an be seen in Figure 3 (a), in the ase of DR, NBEM shows values from95% to 99% while in the ase of NB values shown are from 88% to 98%.
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5%. On the other hand, for NBEM, DR ranges between 93% to 97% for all of theattak distributions. In the ase of FA, signi�ant performane improvements areobserved for dataset distributions beyond 30% of attaks.Also notie that NB results show a signi�ant variane whih in many ases isonsiderable redued when the NBEM approah is used.
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