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Abstract

In Viticulture, visual inspection of the plant is a necessary task for measuring

relevant variables. In many cases, these visual inspections are susceptible to

automation through computer vision methods. Bud detection is one such visual

task, central for the measurement of important variables such as: measurement

of bud sunlight exposure, autonomous pruning, bud counting, type-of-bud clas-

sification, bud geometric characterization, internode length, bud area, and bud

development stage, among others. This paper presents a computer method for

grapevine bud detection based on a Fully Convolutional Networks MobileNet

architecture (FCN-MN). To validate its performance, this architecture was

compared in the detection task with a strong method for bud detection, the

scanning windows with patch classifier method, showing improvements over

three aspects of detection: segmentation, correspondence identification and lo-

calization. In its best version of configuration parameters, the present approach

showed a detection precision of 95.6%, a detection recall of 93.6%, a mean Dice

measure of 89.1% for correct detection (i.e., detections whose mask overlaps the

true bud), with small and nearby false alarms (i.e., detections not overlapping

the true bud) as shown by a mean pixel area of only 8% the area of a true

bud, and a distance (between mass centers) of 1.1 true bud diameters. We con-

clude by discussing how these results for FCN-MN would produce sufficiently

accurate measurements of variables bud number, bud area, and internode length,
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suggesting a good performance in a practical setup.

Keywords: Computer vision, Fully Convolutional Network, Grapevine bud

detection, Precision viticulture

1. Introduction

The present work proposes a solution for the autonomous detection of grapevine

buds within 2D vineyard images captured in natural field conditions. The pro-

posed approach is based on Fully Convolutional Networks (Long et al., 2015;

Shelhamer et al., 2017), a deep learning model specific for computer vision ap-

plications. The present solution contributes to the historical quest for more and

better quality information of different vineyard processes that affect both the

grapevine productivity and grape quality.

For years, viticulturists have been producing models of the most relevant

plant processes for determining fruit quality and yield, soil profiling, or vine

health, and have been gathering a wealth of information to feed into these

models. Better and more efficient measuring procedures have resulted in more

information, with its corresponding impact on the quality of model outcomes,

while inspiring researchers to push the boundaries for producing more sophisti-

cated models. Such information consists of a long list of variables for assessing

different aspects of the trunks, leaves, berries, buds, shoots, flowers, bunches,

canes, and other parts of the plant involved in these processes, e.g., berry ma-

turity, number, weight, size and volume; bunch compactness, number, weight,

and morphology, such as length, width, size, elongation, and volume; bud burst,

number and size; flower number, leaf area and canopy density, shoot length,

trunk ’s pruning weight, among many others (see a complete list in the manual

published by The Australian Wine Research Institute (a,b)).

Nowadays, technology is pushing once again the possibilities regarding the

quality and throughput of these measurements with improved digital and au-

tonomous measurement procedures over manual ones. The discipline is expe-

riencing a transition with many of its variables still being measured manually

through visual inspection. This results in high labor costs that limit measure-

ment campaigns to only small data samples which, even with the use of statisti-

cal inference or spatial interpolation techniques, limit outcome quality (Whelan
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et al., 1996). In some cases, this scenario is exacerbated by the need of experts

for proper measurement, such as the case of variables associated with the plant

phenological stages, i.e., bud swelling, bud burst, inflorescence, flowering, verai-

son, and berry ripening, among others (Lorenz et al., 1995); or by a measurement

procedure that requires the destruction of the plant part being measured, which

prevents tracking a certain variable over time. Such is the case of the mea-

surement of leaf area, bunch weight, berry weight and pruning weight (Kliewer

and Dokoozlian, 2005). Precision viticulture in general (Bramley, 2009), and

computer vision algorithms in particular, have been growing in the last couple

of decades, mainly due to their potential for mitigating these limitations (Seng

et al., 2018; Matese and Di Gennaro, 2015). These algorithms come along with

the promise of an unprecedented boost in the production of vineyard informa-

tion as well as many expectations not only about possible improvements in the

quality of the model’s outcomes, but in its potential to produce better models

by feeding all this information to big data algorithms.

The present work contributes to this general endeavor with FCN-MN 1,

an algorithm for measuring variables related to one specific plant part: the

bud, an organ of major importance as it is the growing point of the fruits,

containing all the plant’s productive potential (May, 2000). Our contribution of

autonomous bud detection not only enables the autonomous measurement of all

bud-related variables currently measured by agronomists (see Table 1 for a non-

exhaustive list of bud-related variables), but it also has the potential to enable

the measurement of novel, yet important, variables that at present cannot be

measured manually. One example is the total sunlight captured by buds, which

depends on the unfeasible manual task of determining the exact location of

buds in 3D space. Although the present work focuses on 2D detection, it could

be easily upgraded to 3D by, for instance, integrating 2D detection into the

1Both code and data have been made available online at https://github.com/

WencesVillegasMarset/DL4BudDetection. The shared repository includes both the corpus

of images used for training and testing, and runnable code for inspecting and visualizing

the complete set of results of our experiments, embedding the various models of the FCN-

MN detector in variable measurement systems, or re-training the FCN-MN on user provided

images.
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Variable (i) (ii) (iii)

Bud number x none

Bud area x x none

Type-of-bud classification x x plant structure (trunk and canes)

Bud development stage x x classifier over bud mask

Internode length (by bud detection) x x plant structure (trunk and canes)

Bud volume 3D reconstruction

Bud development monitoring x x x none

Incidence of sunlight on the bud x x 3D reconstruction, leaves 3D surface geometry

Table 1: A non-exhaustive list of important bud-related variables accompanied by an as-

sessment of the extent to which detection contributes to their measurement. The right-most

column indicates the information beyond detection necessary to complete the measurement,

while the middle columns labeled (i), (ii), and (iii) indicate the three aspects of detection

required: segmentation, correspondence identification, or localization, respectively.

workflow proposed by Dı́az et al. (2018).

Table 1 shows a non-exhaustive list of the main bud-related variables cur-

rently measured by vineyard managers (Sánchez and Dokoozlian, 2005; Noyce

et al., 2016; Collins et al., 2020), together with an assessment of the extent

to which detection contributes to their measurement. The right-most column

indicates the information beyond detection, necessary to complete the measure-

ment, while the middle columns labeled (i), (ii), and (iii) indicate the specific

aspects of detection required for that variable: (i) whether it requires a good

segmentation, i.e., the discrimination of which pixels in the scene correspond

to buds and which correspond to non-bud; (ii) a good correspondence identifi-

cation, i.e., discrimination of bud pixels as belonging to different buds; or (iii)

a good localization, i.e., the localization of the bud within the scene. For in-

stance, let us take the bud number variable. For the bud number to coincide

with the detection count, different components detected for the same bud must

be bundled together as a single detection. For the type-of-bud classification,

in addition to correctly identifying components with buds, the segmentation of

the part of the image corresponding to the bud must minimize the noise pro-

duced by background pixels. Lastly, to measure the incidence of sunlight on the

bud, localization rather than segmentation is necessary, plus the leaf 3D surface

geometry.

A good detector, therefore, should be evaluated on all three aspects of seg-
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mentation, correspondence identification and localization. This is easy for our

detector as its implementation first produces a segmentation mask, which is

then post-processed to produce correspondence identification and localization.

The specific aspects of this approach are detailed in Section 2. The analysis of

detection results presented in Section 3 shows that this approach is superior to

state-of-the-art algorithms for grapevine bud detection. Finally, Section 4 dis-

cusses the scope, limitations of the results obtained for bud detection, sufficiency

of the performance achieved for the measurement of a selection of variables in

Table 3, as well as the most important conclusions, future work and potential

improvements.

1.1. Related work

A wide variety of research using computer vision and machine learning algo-

rithms to acquire information about vineyards (Seng et al., 2018) can be found

in the literature, such as berry and bunch detection (Nuske et al., 2011), fruit

size and weight estimation (Tardaguila et al., 2012), leaf area indices and yield

estimation (Diago et al., 2012), plant phenotyping (Herzog et al., 2014a,b), au-

tonomous selective spraying (Berenstein et al., 2010), and more (Tardáguila

et al., 2012; Whalley and Shanmuganathan, 2013). Among the outstanding

computer algorithms in recent years, artificial neural networks have aroused

great interest in the industry as a means to carry out various visual recogni-

tion tasks (Hirano et al., 2006; Kahng et al., 2017; Tilgner et al., 2019). In

particular, Convolutional Neural Networks (CNN) have become the dominant

machine learning approach to visual object recognition (Ning et al., 2017). Two

recent studies have successfully applied visual recognition techniques based on

deep learning networks to identify viticultural variables to estimate production

in vineyards. One of them, Grimm et al. (2019), uses an FCN to carry out

segmentation of grapevine plant organs such as young shoots, pedicels, flowers

or grapes. The other, Rudolph et al. (2018), uses images of grapevines under

field conditions that are segmented using a CNN to detect inflorescences as re-

gions of interest, and over these regions, the circle Hough Transform algorithm

is applied to detect flowers.

Several works aim at detecting and locating buds in different types of crops

by means of autonomous visual recognition systems. For instance, Tarry et al.
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(2014) presents an integrated system for chrysanthemum bud detection that can

be used to automate labour intensive tasks in floriculture greenhouses. More

recently, Zhao et al. (2018) presented a computer vision system used to identify

the internodes and buds of stalk crops. To the best of our knowledge and re-

search efforts, there are at least four works that specifically address the problem

of bud detection in the grapevine by using autonomous visual recognition sys-

tems. The research work by Xu et al. (2014), Herzog et al. (2014b) and Pérez

et al. (2017) apply different techniques to perform 2D image detection involving

different computer and machine learning algorithms. In addition, Dı́az et al.

(2018) introduces a workflow to localize buds in 3D space. The most relevant

details of each are presented below.

Xu et al. (2014)’s study presents a bud detection algorithm using indoor

captured RGB images and controlled lighting and background conditions specif-

ically to establish a groundwork for an autonomous pruning system in winter.

The authors apply a threshold filter to discriminate the background of the plant

skeleton, resulting in a binary image. They assume that the shape of buds re-

sembles corners and apply the Harris corner detector algorithm over the binary

image to detect them. This process obtains a recall of 0.702, i.e., 70.2% of the

buds were detected.

Herzog et al. (2014b)’s work presents three methods for the detection of buds

in very advanced stages of development when the buds have already burst and

the first leaves are emerging. All methods are semi-automatic and require human

intervention to validate the quality of the results. The best result is obtained

using an RGB image with an artificial black background and corresponds to a

recall of 94%. The authors argue that this recall is enough to solve the problem

of phenotyping vines. They also argue that these good results can be explained

by the particular green color and the morphology of the already sprouting buds

of approximately 2cm.

Pérez et al. (2017) outlines an approach for the classification of bud images

in winter, using SVM as a classifier and Bag of Features to compute visual

descriptors. They report a recall of over 90% and an accuracy of 86% when

sorting images containing at least 60% of a bud and a ratio of 20-80% of bud

vs. non-bud pixels. They argue that this classifier can be used in algorithms for
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2D localization of the sliding windows type due to its robustness to variation in

window size and position. It is precisely this idea that has been reproduced in

the present work to implement the baseline competitor to our approach.

Finally, Dı́az et al. (2018) introduces a workflow for the localization of buds

in 3D space. The workflow consists of five steps. The first one reconstructs a 3D

point cloud corresponding to the grapevine structure from several RGB images.

The second step applies a 2D detection method using the sliding window and

patch classification technique of Pérez et al. (2017). The next step uses a voting

scheme to classify each point in the cloud as a bud or non-bud. The fourth step

applies the DBSCAN clustering algorithm to group points in the cloud that

correspond to a bud. Finally, in the fifth step, the localization is performed,

obtaining the center of mass coordinates of each 3D point cluster. They report

a recall of 45% and a precison of 100% and a localization error of approximately

1.5cm, or 3 bud diameters.

Although these research studies represent a great advance in relation to the

problem of detecting and localizing buds, they still show at least one of the

following limitations: (i) use of artificial background outdoors; (ii) controlled

lighting indoors; (iii) need for user interaction; (iv) bud detection in very ad-

vanced stages of development; (v) low bud detection/classification recall, and

(vi) although some of these works perform some kind of segmentation process as

part of the approach, none of them aim to segment the bud or report metrics of

the quality of the segmentation performed. These limitations represent a major

barrier to the effective development of tools for measuring bud-related variables.

2. Materials and Methods

This section describes the main contribution of the present work, the deep

learning setup FCN-MN for 2D image detection of grapevine buds captured in

natural conditions. including in Subsection 2.1 details on the encoder-decoder

transfer learning architecture. Also, in Subsection 2.2 we explain the specifics

of our implementation of SW, the scanning windows and patch classification

approach selected as the strongest competitor for FCN-MN, not only regarding

the original workflow of Pérez et al. (2017) for the classification of the patches,

but our specific proposal for bud detection based on the scanning windows
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technique. The section concludes with Subsection 2.3 that provides details on

the training configuration of both methods, and the image collection used for

both of these trainings.

2.1. Fully Convolutional Network with MobileNet (FCN-MN)

As outlined in the introduction, the approach proposes the use of computer

vision algorithms to: (i) segment buds by classifying which pixels in the scene

correspond to buds and which correspond to background (non-buds), (ii) identify

bud correspondences by discriminating those pixels that belong to different buds

in the observed scene, and (iii) localize each bud in the scene.

For the segmentation operation, i.e., pixel classification, the fully convolu-

tional network introduced in (Long et al., 2015) is taken as a basis and trained

for the specific problem of grapevine bud segmentation. The following section

2.1.1 describes in detail the architecture considered for these networks. The re-

sulting fully convolutional network returns a probability map on the same scale

as the original image, where the value of one pixel represents the probability

that the corresponding pixel in the input image belongs to a bud. To obtain a

binary mask, a classification threshold τ is applied to each pixel, classifying the

pixel as bud (non-bud) if its probability is higher (lower) than τ . To identify bud

correspondences, post-processing of this binary mask is performed to determine

that two bud pixels correspond to the same bud, as long as they belong to the

same connected component, i.e., joined by some sequence of contiguous bud pix-

els. Finally, there are several alternatives for the localization of objects among

which are bounding box, pixel-wise segmentation, contour and center of mass

of the object (Lampert et al., 2008). In this work the last one was considered,

choosing to localize buds by the center of mass of the connected component.

2.1.1. Encoder-decoder architecture

For the pixel classifier, the three versions –32s, 16s and 8s– of the fully con-

volutional networks originally introduced by Long et al. (2015) were considered,

mainly due to their promising results in many image segmentation applications

(Litjens et al., 2017; Garcia-Garcia et al., 2018; Kaymak and Uçar, 2019). These

networks have characteristic architectures with two distinct parts: encoder and

decoder (see Figure 1).
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Figure 1: Diagram of the FCN-MN network architecture proposed in this work, based on

the fully convolutional network proposed by Shelhamer et al. (2017), replacing its feature

extraction encoder with the MobileNet network Howard et al. (2017), which produces feature

maps with a downsampling factor of n. As a decoder for the production of the segmentation

map, the SkipNet network Siam et al. (2018) is used, implementing variants 32s, 16s and 8s.

The encoder consists of a convolutional neural network that performs a down-

sampling of an input image into a feature set, by means of convolution operations

to produce a set of feature maps, i.e., an abstract representation of the image

that captures semantic and contextual information, but discards fine-grained

spatial information. These operations reduce the spatial dimensions of the im-

age as one goes deeper into the network, resulting in feature maps 1/n the size

of the input image, where n is the downsampling factor. The decoder is an

upsampling subnet, which takes the low-resolution feature map and projects it

back into pixel space, increasing the resolution to produce a segmentation mask

(or dense pixel classification) with the same dimensions as the input image.

This operation is implemented as a network of transposed convolutions with

trainable parameters, also known as upsampling convolutions (Shelhamer et al.,

2017).

To refine the segmentation quality, connections that go beyond at least one

layer of the network, called skip connections, are often used to transfer local

spatial information from the internal encoder layers directly to the decoder. In

general, these connections improve segmentation results, since they mitigate the

loss of spatial information by allowing the decoder to incorporate information

from internal feature maps. Their impact may vary depending on the proposed

skip architecture. In Long et al. (2015), three skip architectures are proposed:

32s without information from internal encoder layers; 16s that adds spatial

information from deep encoder layers; and 8s that adds spatial information from
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deep and less deep encoder layers. The details of these architectures are beyond

the scope of this paper, but can be found in Long et al. (2015) and Shelhamer

et al. (2017). Since the results reported in the literature are not conclusive

regarding which architecture is better, in this work all three alternatives are

considered.

In spite of having achieved excellent results in practice, these architectures

carry a significant load of computational resources. With this in mind, in this

work the VGG encoder of Simonyan and Zisserman (2015), originally proposed

by Long for fully convolutional networks, was replaced by the MobileNet net-

work of Howard et al. (2017). This network stands out for having only 4.2

million parameters against the 138 million parameters of VGG, allowing the

training and testing process to be considerably faster, with a much lower mem-

ory requirement, while maintaining performance. It is due to these changes that

for the rest of the paper these networks are referred to as FCN-MN. The use

of MobileNet as an encoder in the fully convolutional networks of Long et al.

(2015) is not new, but had already been proposed for the 8s architecture by

Siam et al. (2018) in his SkipNet architecture. Technically, Siam et al. (2018)’s

proposal is extremely simple; motivating us to extend it to the 16s and 32s

architectures originally proposed by (Long et al., 2015).

2.2. Sliding Windows detector

This section describes the approach proposed by Pérez et al. (2017) for the

classification of bud images and our implementation for detection based on the

sliding windows described in the original paper, denoted hereon by SW. The

approach follows three steps: (i) it applies the sliding windows algorithm to an

image to extract patches (sub-images or rectangular regions); (ii) it classifies (all

pixels of) each patch into either bud or non-bud, using the algorithm presented

in Pérez et al. (2017); and (iii) it produces the final segmentation mask using a

voting scheme. Details of each step are provided below.

Sliding windows techniques comprise a family of algorithms widely used in

the past as part of various approaches to object localization with bounding

boxes (Divvala et al., 2009; Wang et al., 2009; Chum and Zisserman, 2007;

Ferrari et al., 2007; Dalal and Triggs, 2005; Rowley et al., 1996). In these

algorithms, each image is scanned densely from one end of the image (e.g. upper
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left corner) to the other end (e.g. lower right corner) by a rectangular sliding

window in different scales and different displacements, extracting sub-images or

patches from the original image. In this work, 10 window sizes of equal height

and width are defined, namely 100, 200, 300, 400, 500, 600, 700, 800, 900 and

1000 pixels, with a horizontal displacement of 50% the width of the window

and a vertical displacement of 50% the height of the window, resulting in a

50% overlap between both horizontally and vertically contiguous patches. As a

result, each pixel of the image simultaneously belongs to 4 patches. These values

were chosen on the basis of the robustness analysis of the classifier presented

by Pérez et al. (2017) for the window geometry. This analysis shows that the

classifier is robust for patches that contain at least 60% of the pixels of a bud,

and whose area is composed of at least 20% bud pixels. If we consider extreme

cases, i.e., the smallest bud diameter of 100px and the largest of 1600px, window

sizes of 100px and 1000px could contain at least 60% of the pixels of a bud. In

addition, using a 50% displacement, it is guaranteed that at least one patch will

contain more than 20% bud pixels, 50px and 500px, respectively. The authors

argue that a sliding window detection algorithm could easily propose a scheme

for choosing window size and displacement to ensure that at some point in the

scan the window meets the robustness requirements. However, no details are

given on how to implement it, so in this paper we only report results for fixed

window sizes and 50% displacement. Since the collection of buds have a variable

diameter, not all window sizes will be able to satisfy the robustness requirements

for all patches, but the results can still be useful to make a comparison with the

FCN-MN approach.

The second step in this approach is to determine whether a patch is a bud or

non-bud type. The classifier in Pérez et al. (2017) takes the patches produced by

the sliding windows and, for each patch, it performs the following operations: (i)

it computes low-level visual features using the Scale Invariant Feature Transform

or SIFT algorithm (Lowe, 2004); (ii) it builds a high-level descriptor for each

patch using the Bag of Features or BoF algorithm of Csurka et al. (2004) over

the SIFT features from the previous step; and (iii) it determines the class of

each patch using the BoF descriptor as input to a classifier built using the

Support Vectors Machine algorithm (Vapnik, 2013). Details of the training of
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this classifier are in Section 2.3.3.

Finally, the third step of the approach builds the binary mask of bud pixels.

The mask is constructed through a voting scheme where each pixel gets one

vote for each patch classified as a bud that contains it, where the maximum of

votes is 4 given that 4 is the number of patches a pixel belongs to. A pixel is

then added to the positive (bud) mask if it gets more than ν votes, where ν is

a user given configuration parameter.

2.3. Model training

This section provides details of the training process for each approach. In

order to contrast both approaches they have been designed to receive the same

type of input, i.e., an image of a viticultural scene, and to produce the same

outputs, i.e., a binary mask of the same size as the original image whose positive

pixels represent bud-type pixels. This allows both to be trained with the same

image collection, which is described in the following section, followed by model-

specific training details.

2.3.1. Image collection

The image collection used in this study is the same collection originally used

in Pérez et al. (2017), which has been downloaded from http://dharma.frm.

utn.edu.ar/vise/bc as indicated by the authors. The complete collection con-

sists of 760 images captured in winter in natural field conditions. However, in

this work, only the 698 images containing exactly one bud were taken. Each

image is accompanied by the ground truth, that is, a mask of the manual seg-

mentation of the bud. These images and their masks were used during the

training and evaluation of the detection models. For this purpose, the image

collection was separated into two disjoint subsets: the train set with 80% of the

images and the test set with the remaining 20%. This resulted in a train set

of 558 images and a test set of 140 images, both with their respective ground

truth masks.

2.3.2. FCN-MN training

The 558 images reserved for this purpose were used to train this approach.

These images have different resolutions; however, the three proposed FCN-MNs
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require a fixed size entry. Therefore, all images (including their masks) were

scaled to a resolution of 1024×1024 pixels using a bilinear interpolation method

(Han, 2013). In addition, for the train set images, the pixel RGB intensity values

were scaled from [0; 255] to [-1; 1].

Given the small number of images in the train set, two techniques widely used

in practice were employed to achieve robust training: transfer learning (Pan and

Yang, 2009) and data augmentation (Shorten and Khoshgoftaar, 2019). The

transfer learning process was carried out as follows: (i) the original MobileNet

network proposed by Howard et al. (2017) was implemented; (ii) the network was

initialized with the parameters pre-trained on the ImageNet benchmark dataset

(Kornblith et al., 2019); (iii) the MobileNet multi-class classification layer was

replaced by a binary classification layer; (iv) the network was trained as a bud

and non-bud patch classifier in an analogous way to SVM training using the

same balanced patch train set used for training SW, after scaling all its images

to 224× 224 pixels; and (v) the parameters obtained in the previous step were

used to initialize the encoder of our FCN-MN. The data augmentation process

was applied on the fly during training, meaning that at each iteration the trainer

receives one transformed version of the original image obtained by applying the

following seven operations to the original image over parameter values chosen

at random with uniform probability: rotation of up to 45◦; horizontal shifting

of up to 40%; vertical shifting of up to 40%; shear of up to 10%; Zoom of up

to 30%; horizontal flip and vertical flip. Given that there are 200 epochs, the

trainer is presented with 200 transformed versions of each image in the corpus,

equivalent to one large dataset of 111600 images.

For the training of the three FCN-MN variants –8s, 16s, and 32s– it is

required to specify the optimization method and dropout value, two parameters

typically defined by the user. In this work, the optimization methods considered

were: Adam with learning rate 0.001, beta1 = 0.9 and beta2 = 0.999; RMSProp

with learning rate 0.001 and ρ = 0.9; and Stochastic Gradient Descent with

learning rate 0.0001 and momentum = 0.9. For the dropout case, two values

were considered: 0.5 and 0.001. These values were pre-selected by preliminary

experiments not discussed here.

The best combination of optimization method and dropout was determined
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Mean IoU

Optimizer Dropout = 0.001 Dropout = 0.5

RMSprop 0.44253 0.3117

Adam 0.240277 0.315714

SGD 0.000886 0.00151

Table 2: For each combination of optimizer and dropout values the simple mean is reported

between 12 IoU corresponding to the 3 variants considered in each of the 4 folds.

in training time over a validation set, using the 4-fold cross validation approach

by 60 epochs and batchsize equal to 4, varying over the three optimization

methods and the two dropout values. The values selected were those that max-

imize the mean of Jaccard’s Intersection-over-Union (IoU) (Jaccard, 1912), a

typical assessment measure in segmentation problems. For each combination of

optimizer and dropout values the simple mean is reported over 12 IoU corre-

sponding to the 3 variants considered in each of the 4 folds. It can be observed

in Table 2 that the combination of parameters with which the highest average

IoU is reached is RMSProp with a dropout of 0.001. Using these parameters,

the 8s, 16s, and 32s architectures were trained over 200 epochs and batch size

of 4.

2.3.3. SW approach training

The training for this approach is conducted in the same way as for the

original workflow proposed in Pérez et al. (2017). This involves training a

binary classifier to learn the concept of bud versus non-bud from a collection of

rectangular patches that may or may not contain a bud. During the training,

bud patches must be regions that perfectly circumscribe the bud while non-

bud patches must be regions that contain not a single bud pixel (see Figure 2).

Therefore, to build the patch collection, the 558 images and their masks were

processed following the same protocol as in Pérez et al. (2017), obtaining a total

of 558 patches circumscribing each bud (one per image), and more than 25000

non-bud patches (the non-bud area is much larger than the area occupied by

a bud in the image). The size of these patches is variable, with resolutions

between 0.1 and 2.6 megapixels for the 100× 100 to 1600× 1600 pixels patches.
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Figure 2: Collection of patches used in this work. The first and second rows correspond to

bud patches and non-bud patches, respectively. Image extracted from Pérez et al. (2017).

From this collection of patches, a balanced patch train set was created, with

558 patches for each class, where non-bud patches were taken at random from

the collection of 25000 background patches. The training was performed as

detailed in the pipeline proposed by Pérez et al. (2017): (i) all SIFT descriptors

were extracted from the train set; (ii) BoF was applied with a vocabulary size

equal to 25; and (iii) the SVM classifier was trained on the BoF descriptors of

each patch using a Radial Basis Function kernel, where the value of the γ and

C parameters was established by means of a 5-fold cross-validation on the same

value ranges: γ = {2−14, 2−13, . . . , 2−7} and C = {25, 26, . . . , 214}.

3. Experimental results

In this section we present a systematic evaluation of the quality of our pro-

posed FCN-MN procedure for bud detection. According to the discussion in

the introduction, detection can be decomposed into the three aspects segmen-

tation, correspondence identification, and localization that affect the relevant

bud-related variables listed in Table 1.

First, in the following subsection, we present metrics that quantify the qual-

ity of these aspects, followed by subsection 3 that presents the results for the

metric values obtained for different experiments over the image test set.
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3.1. Performance metrics

3.1.1. Correspondence identification metrics

Detection of buds is the result of two steps: (i) thresholding of the output

masks into a binary mask. For FCN-MN this is done by keeping all pixels of the

probabilistic mask with values higher than τ , and for SW this is done keeping

all pixels that belong to at least ν positive patches, and (ii) considering each

connected component of the binary mask as exactly one detected bud.

The correspondence identification metrics measure in what amount these

detections are correct or incorrect, by first corresponding detections with true

buds whenever the detected and true masks overlap on at least one pixel. The

best case scenario occurs when each detected bud overlaps exactly one true

bud. In some cases this correct detection could be splitted with more than

one detected component overlapping the same true bud. But still it is clear to

which true bud these components correspond to. For images with more than one

true bud, the correspondence identification may become unclear when it occurs

that a single detected component overlaps more than one true bud, resulting

in the large amount of possible detection metrics defined in Oguz et al. (2017).

To simplify the analysis, our image collection contains a single bud per image,

resulting in the following simplified list of possible metrics:

• Correct Detection (CD) are true positive cases where there is exactly

one component per image overlapping the true bud. Here, CD counts all

images satisfying this condition.

• Split (S) are true positives as well, but with more than one component

overlapping some true buds. We report it separately to assess the problem

of double counting. Here S counts the number of true buds for which this

occurs, which in our case of one true bud per image, corresponds to the

number of images for which this occurs.

• False Alarm (FA) is equivalent to a false positive situation and corre-

sponds to detected connected components not overlapping the true bud.

This measure counts the total number of such components over all images.

• Detection Failure (DF ) is equivalent to a false negative situation when

16



the detection mask presents no connected components. It counts one for

each image that satisfies this condition.

To quantify the correspondence identification quality one could simply report

these quantities counted over the test set, with the best case consisting in a CD

value equal to the cardinality of this set. However, determining the overall

correspondence identification quality from the analysis of four quantities can

become rather complicated.

One alternative is reporting precision and recall, denoted as PD and RD,

and referred to as detection-precision and detection-recall to distinguish them

from the segmentation precision and recall defined further down. For that, the

fact that there are two different true positive counts, CD and S, needs to be

addressed first. This is solved by first counting as true positives not only the

CD type of images, but also S, i.e., any image with either a correct detection

or a split case is counted as one true positive, resulting in:

PD =
true positives

true positives+ false positives
=

CD + S

CD + S + FA
,

RD =
true positives

true positives+ false negatives
=

CD + S

CD + S +DF
.

Then, the split type of errors is accounted for by explicitly reporting S.

Given these quantities, we also report the F1-measure, denoted F1, com-

puted as their harmonic average F1 = 2× PD×RD

PD+RD
.

3.1.2. Segmentation metrics

Correspondence identification metrics, although informative, relies on the

overlap between detected and true buds, regardless of how minimal the over-

lap is. This could miss several possible pixel-wise detection errors, resulting

in rather coarse comparisons between competing detection algorithms. For in-

stance, a correct detection could present a very small overlap with the true bud,

with many or even a majority of the true bud pixels missing (i.e., several false

negative pixels), or it could be erroneously reporting several pixels as bud pixels
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(i.e., several false positive pixels). Clearly, the best case scenario would be a case

of correct detection with no false negative or positive pixels that would visually

correspond to a perfect overlap between the detected connected component and

the true bud.

A pixel-wise comparison of the masks could help to assess split quality as

well. The best split, for instance, would be one completely enclosed within

the true mask –i.e., with none of its connected components presenting false

positive pixels–, while covering as much of the true bud mask as possible, i.e.,

presenting just enough false negatives to disconnect its components. Finally, a

false alarm case, presenting only false positive pixels, could be further assessed

by the quantity of pixels in the component.

The community has proposed several metrics to quantify segmentation er-

rors. The most obvious ones are those that report the fraction of the whole

image corresponding to true positive, false positive, and false negative pixels;

denoted TPF , FPF , and FNF , respectively. Again, one can simplify the anal-

ysis by considering pixel-wise precision and recall, denoted as PS and RS and

referred to as segmentation precision, segmentation recall, defined formally as:

PS = TPF/(TPF + FPF ),

RS = TPF/(TPF + FNF ),

and their weighted harmonic mean, the well-known F1-measure, defined for-

mally as 2× PS ×RS/(PS +RS). The segmentation F1-measure has been pro-

posed independently by Dice (1945); thus, usually referred to as the Dice mea-

sure. A common alternative to the Dice measure is the Jaccard’s intersection-

over-union (Jaccard, 1912) defined by TPF/(TPF + FPF + FNF ). In this

work we report only the Dice measure, using the IoU only for model selection

as explained in Section 2.3.2.

One could refine these metrics by applying them, not to the whole mask, but

to the individual correspondence identification cases; for instance, by reporting

the mean Dice measured over all correctly detected components. Or else, by

refining the assessment of how bad a split is, one could report the mean Dice

measure to all components of some split or the mean Dice measure over all split
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components of all split images.

The case of false alarms is rather monotonous and not very informative with

zero precision and recall for all such components. A pixel-wise assessment of

the gravity of a false alarm requires a specific quantification of the number of

false positive pixels. One could simply consider the FPF , the fraction of all

the false positive image pixels. Instead, we considered a normalization against

bud size to be more informative, resulting in the normalized area, denoted as

NA and defined formally as the area of the component normalized by the area

of the (single) true bud in the image, with a component’s area corresponding to

its total number of pixels.

3.1.3. Localization metrics

As a localization metric we propose the normalized distance, denoted as ND,

defined formally as the distance between the center of mass of the component

and the center of mass of the true bud, divided by the diameter of the true bud.

with the bud’s diameter corresponding to the maximum distance between any

two border points of the true bud.

3.2. Results

We proceed now to assess the validity of our main hypothesis that FCN-MN

is a better detector than its SW counterpart, over each of the metrics defined

in the previous section.

For a thorough comparison, several cases for each algorithm were considered:

training 27 FCN-MN detectors and 40 SW detectors over the training set of 558

images, one for each combination of their respective hyper-parameters. For

FCN-MN, these hyper-parameters are the three architectures –8s, 16s, and 32s–

and the 9 values {0.1, 0.2, . . . , 0.9} for the binarization threshold τ . For SW,

in turn, these hyper-parameters are the 10 patch sizes {100, 200, . . . , 1000} and

the 4 values {1, 2, 3, 4} of the voting threshold ν. Then, each of these 67 models

were evaluated over the 140 images reserved for testing purposes, obtaining for

each image the detection components.

Table 3 shows the results for the best detectors of each algorithm, reporting

all performance metrics of the three aspects of detection over all detected com-

ponents over the 140 test images: correspondence identification, segmentation
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and localization. The first column shows the label of the selected detectors, with

the subscript indicating the architecture and patch size for the case of FCN-MN

and SW, respectively; and the superscript indicating the thresholds τ and ν,

respectively.

The table includes all metrics defined in Section 3.1 required for a thor-

ough comparison of FCN-MN against SW. First, four correspondence identifi-

cation metrics are included: detection precision PD, detection recall RD, the

F1-measure F1, and S the total count of test images with splitted detections.

Then, we included seven segmentation metrics: the mean and standard devia-

tion (in parenthesis) segmentation precision, segmentation recall, and the Dice

measure over correct detections and splits, denoted in the table by PCD
S , RCD

S

and DiceCD for correct detections and PS
S , RS

S and DiceS for splits; plus the

mean and standard deviation of the normalized area for false alarms titled NA.

Finally, the table reports the normalized distance ND of the false alarm compo-

nents. We could consider here a separate report for the different correspondence

identification classes. However, as they overlap the true bud, correctly detected

and splitted components should be so close to the true bud that we found no

need to present their values for all cases. Later below we report and discuss the

minimum and maximum ND values obtained for each algorithm.

The table is a summary, as it includes only a subset of all 27 FCN-MN cases

and a subset of all 40 SW cases. A detector was considered for inclusion in the

table if, when compared to its counterparts of the same algorithm, it resulted

in the highest value for at least one of the metrics. The corresponding cell was

marked in bold in the table. For instance, the detector FCN-MN0.8
16s has been

included because its detection precision PD of 97.7% is the largest among the

detection precision of all 27 FCN-MN detectors. Similarly, the detector SW1
1000

has been included because its precision PD = 67.0% is the largest among all 40

SW detectors.

The table shows a clear improvement of FCN-MN over SW. For all metrics,

the best FCN-MN detector (bolded) improves (or ties) over the best SW detec-

tor (bolded) represented in the table by underlying the detector with the best

metric. The exception is the two segmentation recalls RCD
S and RS

S for correct

detections and splits, for which the SW case has a better (larger) mean, 98.8%
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versus 99.9% for correct detections and 74.7% versus 78.6% for the split case;

and the total split count S, with the best case for FCN-MN being 1 and 0 for

the best SW case. These improvements are not statistically significant, however,

due to the large standard deviations of the FCN-MN cases, of 3.4 and 8.1 for

correct detections and splits, respectively, resulting in (statistically) overlapping

values.

In some cases, the improvements of FCN-MN over SW are overwhelming. For

instance, for detection-precision PD, correctly detected segmentation-precision

PCD
S , and split segmentation-precision PS

S , the FCN-MN over SW improve-

ments are 97.7% versus 67.0%, 98.1% versus 46.5%, and 99.9% versus 67.5%,

respectively. In addition, for the NA and ND (of false alarms), where a smaller

value is better, the FCN-MN versus SW improvements are 0.04 versus 0.22 and

1.1 versus 6.0, respectively.

As mentioned, we omitted in the table the mean normalized distances for

correct detections and splits, but for completeness let us present their minimum

and maximum values. For each FCN-MN and SW detector we computed the

resulting mean normalized distance over all correctly detected components in

the test set, on one hand, and over all split components in the test set on the

other. Among all FCN-MN detectors, the minimum and maximum mean are

0.049(0.055) and 0.081(0.145), respectively. Similarly, the minimal and maximal

pair for the splitted components is 0.261(0.179) and 0.429(0.066), respectively.

As predicted, all rather small, with both the minimum and maximum mean

distance falling within one diameter of a true bud, for all cases. For the SW

detectors, the min/max pair of mean normalized distances for the correctly

detected components is 0.383(0.2089)/1.352(1.43), and for splits components is

0.329(0.206))/1.152(0.023), respectively. As can be observed, again FCN-MN

shows an improvement over SW, with no statistically significant overlap of their

min/max interval for the correct detections, and a minor statistically significant

overlap for the splits (where the maximum value 0.429 + 0.066 for FCN-MN, is

overlapping the minimum value 0.329− 0.206 of SW).

3.2.1. Detailed analysis of correspondence identification metrics

Graphically, one could expect a better combined analysis of detection-precision

and detection-recall than could be obtained by comparing the F1-measure. This
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Table 3: Correspondence identification, segmentation and localization metrics for the best

FCN-MN and SW detection models. Each column shows bolded cells corresponding to the

cell with the best metric among all FCN-MN rows and the cell with best metric among SW

rows, and underlined cells corresponding to the best among all combined models, i.e., the best

of the column. Columns PD, RD, F1 and S show results for the Correspondence identification

metrics detection precision, detection recall, F1-measure and number of images with splits,

respectively: Columns PCD
S , RCD

S and DiceCD (resp. PS
S , RS

S and DiceS) correspond to

the segmentation metrics mean segmentation precision, mean segmentation recall, and mean

Dice measure over all correctly detected components (resp. split components); and Columns

NA and ND show the mean NA and mean ND over all false alarm components.
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Figure 3: Precision-Recall scatterplots of the second and third columns of Table 3 discrim-

inating the results for FCN-MN and SW with black and white dots, respectively. Each dot

represents the detection-precision PD and detection-recall RD computed over all test images,

for some particular configurations of hyper-parameters among all models (27 for FCN-MN

and 40 for SW).

is shown as a scatter plot in Figure 3, a graphical representation of a non-

summarized version of the second and third columns of Table 3. Each dot

in the plot is located according to the detection-precision and detection-recall,

and the color black or white, whether it corresponds to an FCN-MN or an SW

detection model.

The graph reinforces the clear and undisputed improvements of FCN-MN

over SW already shown in the table, with similar detection-recalls, but larger

detection-precisions over most scenarios.

Detection-precision and detection-recall are computed over a combination of

correctly detected and splitted components. To easily assess the impact of the

split cases, Figure 4 shows the S values corresponding to the fifth column of

a (non-summarized version of) Table 3 in the form of a histogram, with bins

representing values of S and the bars for that bin representing the proportion of

models that resulted in that value of S. Black and white bars discriminate the
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Figure 4: Histogram reporting the distribution of S for FCN-MN and SW in black and white

bars, respectively. Each bar represents the proportion among all models (27 for FCN-MN and

40 for SW) that contains the number of splits indicated by the bin label. For instance, the

first (from left to right) white bar indicates that almost 62% out of the 40 SW models contains

between 0 and 5 splits.

cases for FCN-MN and SW, respectively. For instance, the first bin indicates

that approximately 54% of the FCN-MN models and approximately 62% of the

SW models resulted in a total number splits of less than 5. Overall, the FCN-MN

distribution is slightly more concentrated in the lower number of splits than the

SW distribution, but in general both algorithms compare fairly, with no clear

contender when compared with the average number of splits they produce.

3.2.2. Detailed analysis of segmentation metrics

Figures 5a and 5b show scatter plots for segmentation-precision and segmentation-

recall and for correct detection and split cases, respectively. These correspond

to their respective columns of (a non-summarized version of) Table 3 with black

and white dots representing the values of FCN-MN and SW detection mod-

els, respectively. The position of each dot in the plot corresponds to the mean

segmentation-precision and mean segmentation-recall over all images in the test

set, computed over the correctly detected components (splitted components,
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respectively) of the masks produced by the detection model associated to that

dot. The standard deviation of the recall (precision) is shown as a horizontal

(vertical) bar.

In Figure 5a (correct detections), one can observe that all black dots (FCN-

MN) are clustered in the upper-right corner of the graph, enclosed by a min-

imum precision of approximately 65% and minimum recall of approximately

60%, while the white dots (SW) are clustered in the lower-right corner of the

graph with maximum precisions of 50% and recall ranging from approximately

35% to 100%. Overall, both algorithms show relatively high recalls, but with

FCN-MN reaching much larger precisions. We can point to the coarse detection

of the SW positive patches as the main cause for low precision, as this is reduced

when extra false positives are present in the positive mask.

In Figure 5b (splits), one can observe again the overwhelming improvements

of FCN-MN over SW, with all (but one) SW cases presenting precisions under

60%, with the outlier showing a precision of nearly 70% and a similar distribu-

tion of recall values.

The segmentation results for the false alarm, the NA for each of the 27

models of FCN-MN and each of the 40 models of SW, i.e., for each cell in the

one-before-last column of (a non-summarized version of) Table 3 are reported

graphically. Figure 6 shows these results grouped in the form of two histograms,

one for the FCN-MN detection models (black) and one for the SW models

(white). Bars in the histogram represent the proportion of detection models

whose mean NA (over all false alarm components of all images) falls within the

bin interval. The more concentrated to the left the better the algorithm, as this

indicates that more detection models for that algorithm resulted in smaller NA

(on average). When compared to the histogram of SW, one can observe that

the histogram for FCN-MN is considerably more concentrated towards the left,

with all FCN-MN models concentrated in a single bar at the left-most interval

of [0.0, 1.0). For SW, the situation is rather different with bars at intervals as

far to the right as [57.0, 58.0), that is, detection models with areas as large as

58 times the bud area. These high values correspond to SW models with large

window sizes, e.g., 1000px, that for low thresholds are classified as bud patches,

rendering all its pixels as bud pixels.
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(a)

(b)

Figure 5: Segmentation Precision-Recall scatterplots reporting the results for FCN-MN and

SW in black and white, respectively, with dots representing the segmentation precision and

segmentation recall average over all images in the test set (and bars representing standard

deviations) with one dot per hyper-parameter configuration (27 for FCN-MN and 40 for SW).

In (a) averages were computed over the segmentation precision and recall of correctly detected

components, while in (b), averages were computed over the segmentation precision and recall

of split components. Recall and precision standard deviations are represented by the horizontal

and vertical grey error bars. 26



Figure 6: FCN-MN (black bars) and SW (white bars) histograms of the mean normalized

area NA of false alarm components with bars representing the proportion of detection models

whose mean NA falls within the bin interval.

3.2.3. Detailed analysis of localization metrics

To conclude, this subsection presents a graphical representation of the lo-

calization results reported in Table 3, that is, the normalized distance (ND)

only for false alarms. Figure 7 summarizes the ND values reported in the cor-

responding column of the (non-summarized version of) Table 3 in the form of

two histograms, one for FCN-MN (black) and one for SW (white). Bars in the

histogram represent the proportion of detection models (27 for FCN-MN and

40 for SW) whose mean ND falls within the bin interval. The more concen-

trated to the left the better the algorithm, as this indicates that more detection

models for that algorithm resulted in smaller ND (on average). Here, again,

the advantage of FCN-MN over SW is clear, with the histogram for FCN-MN

more concentrated in the left-most part than that of SW, with the FCN-MN

histogram running from the (0, 1] to the (7, 8] bin and the SW histogram run-

ning from the (5, 6] towards the (9, 10] bin; and their respective maximums are

at (3, 4] and (7, 8], respectively, indicating that most FCN false alarms are at

a distance of 3 to 4 bud diameters, while most SW’s false alarms are at 7 to 8
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Figure 7: FCN-MN (black bars) and SW (white bars) histograms of mean normalized distance

ND over all false alarm components with bars representing the proportion of detection models

whose mean ND falls within the bin interval.

bud diameters.

4. Discussion and Conclusions

Let us now discuss the results obtained by the proposed approach in the

context of the problem of grapevine bud detection and its impact as a tool

for measuring viticultural variables of interest, highlight the most important

conclusions, and present future work.

In this work we introduce FCN-MN, a fully convolutional network with Mo-

bileNet architecture for the detection of grapevine buds in 2D images captured

in natural field conditions in winter (i.e., no leaves or bunches) and containing

a maximum of one bud.

The experimental results confirmed our main hypothesis: that the detection

quality achieved by FCN-MN is improved over the sliding windows detector

(SW) in all three detection aspects: segmentation, correspondence identification

and localization. Being SW the best bud detector known to these authors, one

can conclude that FCN-MN is a strong contender in the state-of-the-art for
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bud detectors. However, even improving over these, one can still wonder if it

can address the main quality requirements of a practical measurement of the

bud-related variables in Table 1.

Quality performance could be assessed by the metrics reported in Table 3.

In the best case, FCN-MN shows a detection-precision and detection-recall of

97.7% and 100%, respectively, a mean (and standard deviation) segmentation-

precision and segmentation-recall for correct detections of 98.1%(6.0) and 98.8%(3.4),

respectively, and for splits 99.9%(0.1) and 74.7%(28.1), respectively. For false

alarms, it shows a minimum NA of 0.04(0.09) and a minimum ND of 1.1(0.65).

However, each of these best cases occur for different FCN-MN detectors. A

better assessment must be conducted for a single detector. For that, we picked

FCN-MN0.6
16s for its balanced quality overall. This detector reaches detection

precision and recall of 95.6% and 93.6%, respectively, meaning than only 4.4%

of all the detected connected components over all test images are false alarms,

and that only 6.4% of all true buds could not be detected (i.e., resulted in detec-

tion failure). Additionally, it resulted in S = 3, meaning only 3 of all detections

were splitted, which has a segmentation precision of 99.4%(0.6) and a segmen-

tation recall of 16.2%(10.6) on average. The recall is rather small, suggesting

that the split is, in fact, the result of pixel-wise detection of the bud so sparse

that it became disconnected. In contrast, all remaining detections were cor-

rect (i.e., not splitted), reaching segmentation precisions of 92.2%(8.7), a rather

similar value to that of splits, but a much larger mean segmentation recall of

88.2%(13.3). Overall, this resulted in a mean Dice measure for the correct de-

tections of 89.1%(10.7), demonstrating a considerable (mean) coverage of the

true bud with only 11.8% of the bud pixels missing (on average) and only 7.8%

of the detected pixels covering the background (on average). The false alarm

results for this detector showed an NA = 0.08 and ND = 1.1, showing that

these components are rather small covering only an area that is 8% in size of

the total bud area (on average) and distant to the true bud by only 1.1(0.65)

diameters, on average.

Based on these results, what quality should one expect when the FCN-MN0.6
16s

detector takes part in the measurement of the bud-related variables? For brevity,

this point is discussed for three variables from Table 1: bud number, bud area,
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and internode length.

The case of bud number, for example, requires identifying correspondences for

buds in the scene, so its quality will be impacted only by the metrics of detection

precision and recall (95.6% and 93.6%, respectively). To evaluate this impact,

we consider that a plant has approximately 240 buds on average. The number

of buds per plant depends on many factors, such as training system, grape

variety, type of treatment, time of year, among others, so this value is defined

as indicative to achieve an approximate analysis. For this case, a detection

precision of 95.6% would result in 11 buds counted in excess per plant, while a

recall of 93.6% would result in the omission of 15 buds in the count.

In addition, this model produces 3 splits with two components each (accord-

ing to our detailed observation of the results), i.e. a counting error of 3 buds in

excess over the 140 true buds in the test set, representing an error of 2.1% that

for 240 buds per plant corresponds to 5 excess buds per plant, that summed

to the 11 false positives from the detection precision gives a total of 16 extra

buds, practically cancelling out with the omission error. But additionally, these

errors could in practice be statistically characterized allowing for measurement

correction towards more accurate values. Despite these good results, our ap-

proach still has practical limitations for the measurement of bud number due

to the impossibility of automatically associating counts of the same bud in two

different images, making it difficult to massively measure the bud count of a

plant or plot.

The second variable of interest considered is bud area, where, in addition to

identifying correspondences for the buds of a scene, it is necessary to segment it

to estimate its area in pixels. Correspondence identification analysis is analogous

to bud counting, so now only segmentation metrics are discussed. From the

analysis developed in the previous paragraphs, it can be concluded that the

segmentation errors by splits and false alarms have a low impact in the general

results and, therefore, in the estimation of bud area. On the other hand, if we

compensate the segmentation errors for the correct detections (i.e. 11.8% of the

bud pixels missing and 7.8% of the detected pixels covering the background),

the area estimation error is only 4%. For illustrative purposes, we see that this

error is smaller than the precision error resulting from measuring the area of a
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bud with a caliper. If we assume that the shape of a bud fits a circle, and that

the typical diameter of a bud is 5 mm, the resulting area is 19.63mm2. Since a

caliper has an accuracy of 0.1mm, the area precision error would be ±1.7mm2,

equivalent to 8.6% of the total area, a figure that doubles the 4% error produced

by our FCN-MN detector. To this difference, the error of manual measurement

resulting from assuming a circular bud shape must be added, an unnecessary

approximation in the case of FCN-MN.

As in the case of counting, these good results in measurement precision are

limited to achieve a practical use of this type of measurement because it is

impossible to automatically associate area measurements of the same bud in

two different images, making it difficult to systematically measure this variable

for the buds of a plant or plot. Furthermore, in this case, the areas obtained

are in pixels, which need to be converted into length or area magnitudes.

Finally, let us consider the case of internode length, estimated by the dis-

tance between buds of the same branch (by the closeness between buds and

nodes), which involves the operations of correspondence identification and lo-

calization. Again, correspondence identification analysis is analogous to bud

counting, which in this case will result in the reporting of more than one dis-

tance due to the detection of more than one component per bud. Among these

distances, we understand that the worst case can occur between two false alarms

when they are at the farthest side to the other bud, at a distance ND. On av-

erage, ND is 1.1 bud diameters, equivalent to 5.5mm after taking a typical vine

bud diameter to be 5mm, resulting in a 7.3% error in estimating the distance

between buds/nodes by taking the typical bud distances to be approximately

15cm. An important limitation of our approach for achieving a practical use

of this measurement is the possibility of determining when two buds are on

the same branch, which requires knowledge of the plant structure. Further-

more, with our method, only the distance projected in the image plane could

be measured, which can arbitrarily differ from the actual distance in 3D.

The greatest impact errors occur because of the excess or omission of con-

nected components, with the excess error exacerbated by the fact of associating

detected buds with individual connected components. A possible improvement

to mitigate these errors would be to apply some post-processing. One such
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post-processing is spatial clustering of connected components grouping them by

proximity. One could expect this to improve the results based on the small ar-

eas of split and false alarm components. First, due to the closeness of the false

alarms to the true bud (small ND) –as well as the splits and correctly detected

components (overlapping with it)–, and the fact that true buds in real plants

are typically tens or even hundreds of bud diameters apart, one could expect

that a simple spatial clustering of the components would connect all of them

together as a single, and correct, bud detection. Second, due to their small area

-if clustered together- the false alarm components would only slightly reduce

segmentation precision.

Another possible post-processing would be to rule out small connected com-

ponents, for example, whose area in pixels normalized to the total detected area

(sum of the areas of all connected components) is less than a certain threshold.

Improvements could be expected with this post-processing, since the results in

this work show that false alarms present small areas in relation to the true bud.

Lastly, connected component filters could be considered based on plant struc-

ture, for example, ruling out connected components that are far away from (or

do not overlap with) branches.

One could also consider in future works some improvements to overcome the

limitations for practical use mentioned above: (i) no associations between plant

parts of different images, (ii) distance and area measurements in pixels, (iii)

only 2D geometry, (iv) lack of knowledge of underlying plant structure, and (v)

need of images with no leaves.

One could also extend to buds the work of Santos et al. (2020) that addresses

limitation (i) for grape bunches. Limitation (ii) could be easily addressed by

adding to the visual scene some marker with known dimensions. This, how-

ever, requires such a marker in every image captured, a problem that could be

overcome by first producing a calibrated 3D reconstruction of the scene, i.e., a

3D reconstruction calibrated with a single marker in one of its frames (Hartley

and Zisserman, 2003; Moons et al., 2009). In this way, every 2D image could

be calibrated against the 3D model, omitting the need for a marker. In addi-

tion, a 3D reconstruction of the scene could address limitation (iii) by locating

the detected buds in 3D space, following, for instance, the approach taken by
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Dı́az et al. (2018). Finally, a solution to limitations (iv) and (v) would require

an integrated approach involving the detection in 3D of branches and leaves,

respectively.
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